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Radio Advertisements are Annoying Step 1: Feature Extraction

Broadcast radio offers an appealing way to enjoy
music. Devices used to access FM radio are
ubiquitous in modern life: cars, portable music
players, and home stereos almost universally contain
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Because of the funding model of radio,
advertisements appear frequently between periods
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Then, we train a support vector machine to classify
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novel audio clips as it receives them.




